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ABSTRACT 

For a given n-tuple of non-negative numbers (p0,pl . . . . .  Pn-1) whose sum is 
equal to unity let g(t) denote the probability that Z~o= 1 Xj/nj ~ t, where the in- 
dependent random variables Xj assume the values 0, l ,  . . . ,  n -- 1 with prob- 
abilities P0, Pl . . . . .  Pn-1 respectively. For most n-tuples we obtain upper and 
lower bounds on ] ~(m) ]; these estimates involve the n-ary representation of 
m, or in some cases of 2m, so that a very simple and explicit characterization 
of the sequences on which ~(m) approaches zero can be given. In particular, 
for the Cantor middle-third measure, corresponding to the triple 0/2 ,  0, 1/2), 
the following criterion is obtained. ~(m) approaches zero on a sequence T 
of integers if and only if ~(2m) approaches infinity on T, ~,here ~(k) is 
the sum of the following thrce quantities associated with the ternary 
representation of k: the number of runs of zeros, the number of runs of twos 
and the number of ones. The results obtained are easily extended to the case 
when the n-tuple varies with j (subject to certain mild restrictions). 

. 

Let # be any continuous measure on the interval [-0, 1]. According to a simple 

but remarkable theorem of Wiener [1, p. 42], the Fourier-Stieltjes (FS) coefficients 

(/~j) = f~ exp ( -  2nijt)d#(t) satisfy the limiting relation 

k ]: 
/'l J = l  

in fact, more generally, 

1 
n 

[/~(j + k)[2 ~ 0, uniformly in k. 
1=1 
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It follows readily that for any positive number ~ there exists a subset S~ of the 

integerst possessing density zero such that IP(m) l < ~ on the complement of S~; 

a jortiori, lim infm, ~ [ p(m) [ = 0, so that one can select a subsequence on which 

/~(m) approaches zero. (This fact may be looked upon as a generalization of the 

Riemann-Lebesgue lemma, which holds under the additional hypothesis of 

absolute continuity.) Very little is known concerning the problem of associating 

with the given measure/~ a sequence on which 12 approaches zero. (Refer to [4, 

p. 80], I-5, p. 148].) In this note we obtain a solution to this problem for an important 

class of measures which includes, in particular, the middle-third measure of 

Cantor. 

Let (Po, Px, "",Pn- 1) be an n-tuple (n > 2) of non-negative real numbers whose 

sum equals one, and let # be the cumulative distribution function of the measure 

defined on the interval [-0, 1] as follows: /~(t) is the probability that 

xj 
j=l ~-=<t, 

where the independent random variables (X j} assume the values 0, 1,2,-.. ,  n - 1 

with probabilities Po, P l , ' " ,P , -1  respectively. The n-tuple (1/n, 1 /n , . . . ,1 /n)  

corresponds, of course, to Lebesgue measure, while the n-tuples containing 

n - 1 zeros correspond to unit mass at a certain point. Aside from these trivial 

cases, the measure is continuous but singular; refer to [-2]. In particular, the 

triple (�89 0, �89 furnishes the Cantor middle-third measure, which is the canonical 

example of a continuous singular measure whose FS coefficients fail to approach 

zero; see 1-3, p. 127]. Accordingly, we may refer to the measures under consideration 

as being of Cantor type. 

In this paper we shall obtain very precise descriptions of the sequences on which 

/~(m) ~ 0  for the aforementioned measures and for certain somewhat more 

general measures. 

2. 

In the case n = 2, the FS coefficients of the measure associated with the pair 

(P0, Pl) ( = (1 - Pl, Pl)) are given by 

2him 
(1) /~(m) = ]~ 1 - Pl + Pi e x p - ~ T -  ] , 

j=l 

t Since ~ (-m) = t~ (m), we confine attention to the positive integers. 
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so that 

(2) I P( )l = 
j = X  

F O U R I E R - S T I E L T J E S  C O E F F I C I E N T S  

�9 2 f i r e  
1 - (1 - ct) sin = (2px - 1 )  2 .  

37 

we immediately obtain 

(1 - ~) sin 2 rcm 
2 J 

(4) 

Summing over j and taking account of (2), we obtain 

~ . 2xm 12 ~ rcm (5) ( l - a )  sm 2j < - l o g [ / ~ ( m )  < C  sin 2 2] . 
j = l  j = l  

Thus,/~(m) approaches zero on a sequence T of positive integers if and only if 

the sum of the series ]~= 1 sin2 rcm/2 j becomes infinite as m goes to infinity on T. 

We shall show that the sum of this series is of the order of magnitude R(m),  the 

number of runs (maximal blocks of the same digit) appearing in the binary 

representation of m; that is, there exist two positive constants C~, C2 such that, 

for all (positive) integers m, 

zorn 
(6) CtR(m  ) < ~ sin2~-- < C2R(m). 

j = l  

Rather than giving a formal proof of this fact, which would be tedious, an illustrative 

example will clarify the whole idea. Let m be the number possessing the binary 

representation 1100111 (thus, m = 103). Corresponding to the right-most run, we 

obtain the quantities sin 2 �89 sin 2 �88 sin 2 1 ~n, which are dominated respectively by 

nz/2 z, rcz/4 z, n2/82 ' and exceed, respectively, (2/n) 2 �9 ~2/22, (2/n) 2 " ~2/42, 

( 2 / / t )  2 " ~ Z 2 / 8 2 .  Thus, the contribution of this run to the sum ~7=t sin 2 x m / 2  i is 

less than n 2 (1/22q - 1/42q - 1/82+ ..-) and greater than unity. A trivial modi- 

< - l o g  1 - (1 - ~)sin 2 -~ -  

< ]~ l (1 - -~ )ks in2 r rm 
k = 1 2J 

rtm 1 
= C sin 2 -~-f, C = log-~. 

Setting aside the case ct = 1, corresponding to p: = 0 or 1, and the case ~ = 0, 

corresponding to Lebesgue measure, we proceed to obtain upper and lower 

bounds on [/~(m) 12. From the expansion 

(3) - l o g ( l -  l - ~ ) s i n  2 ~  = -~-(1 - ~)ksin 2k 2: 
�9 k = l  
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fication holds for the other two runs; the lower and upper bounds obtained are 

weaker than those obtained above, but this is of no concern. By addition one 

obtains (6) with R(m) = 3. This argument holds equally well for any odd number 

m, while for even values of m we note that, if m' is the largest odd divisor of m, 

the sum T~T:I sin27rm/2~ is unchanged when m is replaced by m', while R(m) 

= 1 + R(m'). Therefore, the proof of (6) may be considered complete. 

Thus we have proved the following result. 

THEOREM 1. Let P l r  0, �89 1 and let It be the measure determined by the 

pair (Po, Pl). Then ft(m) approaches zero on the sequence T if and only if, on 

this sequence, the number of runs in the binary representation of m becomes 

infinite. 

We shall now exhibit a set S of density zero on whose complement R(m) - ,  oo; 

it will then follow from (6) that p(m) approaches zero on the complement of S 

for every measure/~ of the type under consideration. Let S consist of those integers 

for which R(m) < �88 K(m), where K(m) is the length of the binary representation 

of m, that is, K(m) = 1 + [log2m ]. If S(m) denotes the number of integers not 

exceeding m which belong to S, then clearly 

(7) S(m) <= S(2 ~tm)) 

m 2r(m)_l 

NOW a completely elementary argument shows that S(2 n) = o(2n), and hence 

S(m) = o(m). Thus, we have proved Theorem 2. 

THEOREM 2. Let S be the set of positive inte#ers whose binary representation 

satisfies the condition R(m) < �88 K(m), where R(m) denotes the number of runs 

and K(m) denotes the number of digits, and let I~ be the measure determined by 

the pair ( 1 -  PDPl), with p~ ~ O, �89 1. Then S is of density zero, and ~(m) 

approaches zero on the complement of S. (Clearly, the factor �88 appearin# in the 

inequality may be replaced by any positive number smaller than �89 

The set S which has been defined above is not of uniform density zero, for 

the fact that R(m + 1 ) =  R(m)+ 1 immediately shows that S contains in- 

creasingly long successions of numbers which include the powers of 2 (for which 

numbers the binary representation contains exactly two runs). From Theorem ! 

it is evident that, given any positive integer n and any set of integers ~ on whose 

complement ~(m)-~ 0, ~ must contain, infinitely often, successions of length 
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greater than n. Thus, it is impossible to thin out the set S so as to obtain a set of 

uniform density zero. 

By a minor extension of the foregoing arguments we can extend the results to a 

broader class of continuous singular measures, as follows. 

THEOREM 3. Let at, a2,a3, '"  be a sequence of numbers satisfyin9 lim sup 

l aj - �89 < �89 and let l~(t) = probability that ~,~1 Xj[ 2J ~ t, where the in- 

dependent random variables {Xi} assume the values O, 1 with probabilities a j, 

1 - aj respectively. Then ~(m) ~ 0 on any set of inteoers on which R(m) ~ oo, 

in particular on the complement of the set S defined above; if, in addition, 

lim inf[ aj - �89 > 0, then 12(m) ~ 0 on a set T if and only if R(m) ~ oo on T. 

3. 

In this and the following sections we extend the previous results to the measures 

determined by triples (Po, Pa, P2). In analogy with (1) and (2) we have 

/~(m)= f i  ( p o + p l e x p ( - 2 r c i m ]  + p 2 e x p (  4 ~ i m ~  
j=l 3---7---/ ~7 l /  

(7) 

and 

(8) �9 2 2rcm\ 
nm _ 4poP2Sln --~--) [P(m)[ 2 -- I ]  1 - 4pl(po + p2)sin2 - ~  - 

j = l  

First we consider the triple (�89189 corresponding to Cantor's middle-third 

measure. In this case (8) reduces to 

. 22rcm'~ (9) IP(m)l 2 =  ~-I 1 - s i n  --~--~, 
j = l  

from which it is apparent that/~(m) # 0,/~(3m) = p(m); this suffices to show that 

p(m) fails to converge to zero, and that in estimating its magnitude we may 

confine attention to values of m which are not divisible by 3, that is, whose 

ternary representation terminates in 1 or 2. 

Now, let 2m (not m) possess the ternary representation axa2.., a t ,  where 

K = 1 + [log 3 2m]. Imagine this representation broken up into runs of zeros, 

ones, and twos; we can then write the above representation in the symbolic form 

Im 12...OC/Ra (10) 2m = ~1 ~2 

where R denotes the total number of runs, ll, 12,-.-, lR denote the lengths of these 

runs, and each ct is one of the digits 0,1,2, no two adjacent alphas being equal and 
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~1 and cts being 1 or 2. In (9) we break the product into R + 1 subproducts; in 

these subproducts j ranges, respectively, from 1 to IR, from 1 + IR to lR-1 + IR, 

from 1 + IR-~ + IR to IR-2 + 1R-~ + IR, etc. (In the final subproduct, of course, j 

ranges from K + 1 to infinity.) 

We begin by obtaining upper and lower bounds on the first of  these subproducts, 

(11) PI = 1-I  1 - sin 2 = I I  c~ 
j=l.= 3 . j= l  

If ~R = 2, then P1 is immediately seen to assume the form 

(12) e l =  I~ c~ 
j = l  

and so 

Cl ) 0 f l  1, 
j = l  

or  

i l  ]" �9 oo COS 2 ~ )  (14) 0 < - logP 1 < - l o g ~ ,  \ j = l  *~ " 

On the other hand, if =g = 1, then instead of (12) we obtain 

(15) P1 = I l  sin2 
2 " 3 J '  j = l  

and so (using the inequalities 1/3 j < sin n/2 �9 3 j < r~/2 �9 3 j) we obtain 

( 1 6 )  - 2 / R l o g � 8 9  + 21R(IR+ 1)log3 < - -  l o g P  1 < 21R(l R + 1)log3. 

NOW, for each of the other finite products, the above estimates carry over with 

minor modifications whenever a run of ones or twos is under consideration, while 

a run of zeros furnishes exactly the same pair of estimates as a run of twos. 

Finally, the infinite subproduct (corresponding to j > K = 11 + 12 + "'" q- IR) 

corresponds to a run of zeros. 

Summing up, we conclude that for each run of  zeros and each run of twos the 

corresponding subproduct Pk (including the infinite subproduct) satisfies 

(17) C1 < - log Pk < C2, 

while for each run of ones we have, for the corresponding subproduct, 

(18) Cl(length of run) 2 < - log Pk < C2 (length of run) 2, 
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where C1 and C2 are suitably chosen universal constants. Summing over all the 

runs, we obtain 

Cl(Rom) + R2(2m ) + $1(2m)) <logl/~(m)12 
(19) 

< C2(Ro(2m) + Rz(2m ) + $1(2m)), 

where 

Ro(k) = number of 0-runs in ternary representation of k; 

R2(k) = number of 2-runs in ternary representation of k; 

St(k) = sum of squares of length of 1-runs in ternary representation of k. 

If  we denote the number of appearances of the digit 1 in the ternary representa- 

tion of k by Nl(k ), then obviously Nl(k ) < Sl(k ) < Nl(k)2; for convenience 

both here and later, we introduce the notation 

~b(k) = Ro(k ) + R2(k ) + Sl(k), 
(20) 

~(k) = Ro(k) + R2(k) + nl(k). 

Then we can sum up our results as follows. 

THEOREM 4. The FS coefficients of the Cantor middle-third measure satisfy 

the inequalities 

(21) e x p ( -  C2~b(2m)) < [/i(m) [2 < exp ( -  Clq~(2m)) 

for suitably chosen positive constants C1, C2. Thus, ~t(m) approaches zero on a 

sequence T if and only if ~b(2m) or (equivalently) ~b(2m) approaches infinity on T. 

As in the preceding section, one can now easily demonstrate the existence of a 

set S of density zero on whose complement the condition stated in the theorem 

is satisfied. Let S be the set of integers m which satisfy the condition 

(22) Nl(2m) < �88 + [log32m]). 

Then, very much as in the preceding section, one shows that S is of density zero, 

and Theorem 4 guarantees that/~(m) approaches zero on the complement of S. 

4. 

Let us momentarily replace, in (7) and (8), 2rcm/3 s by a continuous real variable 

u. Then it is evident that 

max [4pl(po + Pz)sin2u + 4popz sin22u] < 1, 
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and that equality holds if and only if Po + P~ e-~" + P2 e-2iu can vanish. This 

condition furnishes the pair of real equations 

(23) Pl + (Po + P2)cos u = 0, (Po + P2)sin u = 0. 

This system possesses a solution if and only if either (or both) of  the following 

conditions are satisfied: 

(24a) Po = P2 >= �88 

(24b) Pt = �89 

Setting aside these conditions for later consideration, we see that, exactly as in 

Section 2,/2(m) approaches zero on the sequence T if and only if, on T, 

(25) ~ [Pl(Po + P2) sin2 ~zm 2~m]-~ S = 1 3S + PoP2 sin2 -~7--J ~"  

We now set aside for later consideration, in addition to (24), the additional case 

(26) Pl = 0 or 1. 

Then (25) is certainly implied by 

(27) ~ sin 2 
irm 

s=1 -~--" ~;  
conversely, 

Pl(Po + p 2 ) s i n 2 ~  -- + PoP2 sin2 
2~m 

3 s 

R/Tt . �9 4 7 c m  
(28) = {Pl(Po + P2) + 4poP2} sin2 ~ - 4poP2 sm 3s 

< {Pz(Po + P2) + 4poP2} sin 2 nm 
= 3 s , 

and so (25) implies (27). Thus, subject to the various restrictions that have been 

imposed,/~(m) approaches zero on T if and only if (27) holds. Now, by a virtual 

repetition of the argument presented in Section 3, we can show that, for suitable 

positive constants C1 and C2, 

oo 
. n 2  R m  (29) Ct~b(m) < Y~ sl - ~ - <  C2r 

j = l  

and so we obtain the following analogue of Theorem 4. 

THEOREM 5. Let none of the conditions (24a), (24b), (26) be satisfied. Then 
there exist positive constants Ct, C2 (depending on the triple (Po, Pz, P2)) such that 
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(30) e x p ( -  C25(m))< [/~(m) 12 < e x p ( -  C1r 

Thus, ~(m) approaches zero on T if and only if $(m) approaches infinity on 

this sequence. 

It should be emphasized that in Theorem 4 the ternary representation of 2m, 

rather than of m, is involved, and that the magnitude of/~(m) is controlled by 

qb(2m), while in Theorem 5 the ternary representation of m itself is involved, and 

$(m), not ~b(m), appears in the estimate of [p(m) I. 

o 

We proceed to consider the cases there were set aside in Section 4. 

First of all, the triples (1,0,0), (0,1,0), (0,0,1) correspond to unit masses at 

0, 3, 1 respectively, so that I P(m) [ -- 1. 
Secondly, for the triples (3, 3, 0) and (0, 3, 3) we immediately obtain 

(31) I (m)[2 = f i  ( 1 - "  27rm'~ sin --~-] ,  
j = l  

and by comparison with (9) we see that for the measures corresponding to these 

two triples the behavior of I (m) l is described by Theorem 4 (not Theorem 5), 

except that 2m is replaced by m. 

Next, for any triple of the form (Po, 0, 1 - Po) with Po # 0, 3, 1, we obtain 

__fi( (32) I#(m ) [2 1 - -  ~ s i n  2 0 < ~ < 1, 
~=~ 3J ] '  

and so we have the situation analyzed in Section 4, except that m is replaced by 

2m; thus (30) holds with r replaced by ~(2m). 

For the triple (�88 3, �88 we have 

. 2 7"cm '~ 2 
(33) ]p(m) 12 = f i  1 - s i n  - - ~ f ]  ; 

j = l  

except for the exponent on the right side, we have the same situation that holds 

for the triples (3, 3, 0) and (0, 3, 3). On the other hand for the triples (Po, 3, 3, Po), 

with Po # 0, �88 �89 we obtain 

. 2~rn~ ( ~ m )  (34) la(m)l 2 =  ~I 1 - s m - ~ ]  l ' . s i n 2 - ~ 7 - ,  O < c t < l ,  
j = l  

and so we have a combination, so to speak, of the second and third cases described 
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by (31) and (32) respectively. Once again we conclude that/i(m) approaches zero 

on T if and only if $(m) becomes infinite. 

Finally, there remain the triples (Po, 1 - 2 p 0 ,  P0), �88 < Po < �89 In this case we 

obtain 

(35) [p(m)[2= 1~ (1-0 sin2rrm2  j = 1 ---~7--]' 1 < ~ = 4po < 2. 

One can easily construct a single sequence of density zero on whose complement 

/2(m) approaches zero for every measure of this type, However it is clear that a 

necessary condition cannot be given which is independent of  Po on a set T such 

that /i(m) should approach zero on T since the triplet (], �89 �89 corresponds to 

Lebesgue measure, while for any other triplet of this type we have/i(3 ~) =/i(1)  # 0. 

Perhaps a necessary and sufficient condition on T independent of Po can be given 

for all triplets under consideration excepting (�89 ], ]), but we do not investigate 

this question here. 

1 

Now we sketch very briefly the case n > 3. It is almost obvious that the previous 

arguments can be extended to furnish the following result. 

THEOREM 6. Suppose that all components of the n-tuple (Po, Pt, "", P,-1) are 

non-vanishing and that the polynomial Po + Pl z + P2 z2 + "'" + P , - I  z" - I  does 

not vanish on [ z ] = 1. Then equation (30) holds, where ~k(m) is now interpreted 

as the sum of: 

Ro(m ) = number of runs of zeros in n-ary representation of m; 

R ,_ l (m  ) = number of runs of (n - 1)s in n-ary representation of m; 

N(m) = number of  digits other than 0 and (n - 1) in n-ary representation 

of re. 

Continuing in this vein, we also see that if  S is now defined as the sequence of 

integers m for which 

(36) N(m) < �88 (1 + [log~m]), 

then S is of density zero and ~fl(m) approaches zero on the complement of S; as 

before, S cannot be replaced by a set of uniform density zero. 

Theorem 3 also generalizes, as follows. 

THEOREM 7. Let A be the subset of the plane Po + P~ + P2 + "'" P , -  1 = 1 
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consisting of points which satisfy the hypothesis of the preceding theorem. 

Consider a sequence (Po(J ) ,P l ( J ) ,P2( J ) , ' " ,P , - I ( J ) ) ,  J = 1, 2, 3 , . . . ,  of n-tuples 

which lie in a compact subset of A, and let #(t) be the probability that 

Y ~ l X j / n J  <t ,  where the independent random variables {Xi} assume the 

values 0 , 1 , 2 , . . . , n - 1  with probabilities Po(J),Pl(J),"',P,-I(J). Then the 

conclusion of Theorem 6 still holds (so that ft(m) approaches zero on the comple- 

ment of the set S defined above). 

The set A is obviously open (relative to the plane Po + Pl + P2 + "'" + P , -  1 = 1) 

and non-void  (for it contains,  in part icular ,  any n-tuple with positive components  

one of  which exceeds �89 In  the case n = 3 we have given an explicit charac- 

terization of  A, and it would appear  to be of  interest to extend this characterizat ion 

to larger values of  n. 
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